Anna Beletska

anna.beletska@inria.fr

Extracting coarse-grained

parallelism
In arbitrarily nested loops

Coarse-grained parallelism

Coarse-grained parallelism is employed by
creating a thread on each processor, executing in
parallel for a period of time with occasional
synchronisation.

[teration space and Coarse-grained Fine-grained
data dependences scheme scheme

Coarse-grained parallelism

m Provides high performance on multiprocessors

IMain Memory

Coarse-grained parallelism

m Increases performance on computers with dual
CPU core chips

Dual CPU Core Chip

CPU Core CPU Core
and and
L1 Caches L1 Caches

Bus Interface
and
L2 Caches

Coarse-grained parallelism

m Increases performance of distributed systems

Coarse-grained parallelism

s Enhances performance of uniprocessors

» Improves code locality

* Decreases memory requirements

Coarse-grained parallelism

Intelligent |
home = ¥ N

1 N o ! w
Z =Er= 10Gop/s &=
att
W ——— Reconfigurable

W y Access MPEG 4

W Terminal >100 Gop/s

It can be used in embedded systems decreasing
cost and power consumption!

Approaches to extract CGP

s Unimodular transforms!
* Can be applied only to perfectly-nested uniform loops

Banerjee U. Unimodular transformations of double loops. In
Proceedings of the Third Workshop on Languages and Compilers for
Parallel Computing. (1990) pp. 192-219

Wolf M.E. Improving locality and parallelism in nested loops. Ph.D.
Dissertation CSL-TR-92-538, Stanford University, Dept. Computer
Science. (1992)

Approaches to extract CGP

m Approach based on the Hamiltonian recurrences 2

* Is applicable only to uniform non-parameterized loops

2 Gavalda R.,Ayguade E., Torres J. Obtaining Synchronization-Free
Code with Maximum Parallelism. Technical Report LSI-96-23-R,
Universitat Politecnica de Catalunya. (1996)

Approaches to extract CGP

m Procedures of heuristic searches?

* do not guarantee extracting the entire coarse-
grained parallelism available 1n non-uniform loops

3 W. Kelly, W. Pugh, Minimizing communication while preserving
parallelism, in: Proceedings of the 1996 ACM International Conference
on Supercomputing. (1996) 52-60

Approaches to extract CGP

s Affine transformation framework*

Feautrier P. Some efficient solutions to the affine scheduling problem,
part i, one dimensional time. International Journal of Parallel
Programming 21. (1992), pp. 313-348

Lim W., Cheong G.I., Lam M.S. An affine partitioning algorithm to
maximize parallelism and minimize communication. In Proceedings of
the 13th ACM SIGARCH International Conference on Supercomputing.
(1999)

Darte A., Robert Y., Vivien F. Scheduling and Automatic Parallelization.
Birkhauser Boston. (2000)

Bastoul C., Cohen A., Girbal S., Sharma S., and Temam O. Putting
polyhedral loop transformations to work. In Languages and Compilers
for Parallel Computing (LCPC'03). LNCS, pp 23--30, College Station,
Texas, Springer-Verlag (2003).

Approaches to extract CGP

s Slicing framework?>

Weiser M.. Program slices: formal, psychological, and practical
Investigations of an automatic program abstraction method. PhD
thesis, University of Michigan, Ann Arbor, Ml. (1979)

Weiser M. Program Slicing. IEEE Transactions on Software
Engineering, v. SE-10, no. 7. (1984), pp 352-357.

Pugh W. , Rosser E. Iteration Space Slicing and Its Application to
Communication Optimization In Proceedings of the International
Conference on Supercomputing. (1997), pp 221-228

Data dependences

Definition 1. A dependence relation is a mapping from one iteration
space to another, and 1s represented by a set of linear
constraints on variables that stand for the values of the loop
indices at the source and destination of the dependence and
the values of the symbolic constants®.

set relation
A

[i,j]:lsi,jgs?
LY_/&_W_J

iteration Presburger Presburger
space formula] formula

=
d

Iteration space and data [teration space Data dependences
dependences

Pugh, W., Wonnacott D.: An Exact Method for Analysis of Value-based Array Data
Dependences. Workshop on Languages and Compilers for Parallel Computing, 1993

7

Dependence analysis

Our approaches require an exact dependence analysis
which detects a dependence 1f and only if 1t exists.

The dependence analysis by Pugh and Wonnacott was
chosen where dependences are found in the form of tuple
relations’ .

Pugh W., Wonnacott D. Constraint-based array dependence analysis.
In ACM Trans. on Programming Languages and Systems. (1998)

Dependence graphs

Reduced
Dependence Graph

—
T @@

Dependence Graph

12019~

1s composed of vertices for each

represents all the dependences statement of the loop and edges
among iterations available in a joining vertices according to
loop dependence relations

Strongly Connected Components

= Strongly connected component is a maximal
subset of vertices and edges of a reduced

dependence graph where for every pair of vertices
there exists a direct path.

This graph has two strongly
connected components given
by {S1, S2} and {S3},
respectively.

Affine transformation framework

The Affine Transformation Framework# is considered in
many works and unifies a large number of previously
proposed loop transformations.

Today, 1t 1s one of the most powerful frameworks for loop
transformations allowing us to extract coarse-grained

parallelism presented in arbitrarily nested uniform loops
and 1n some cases of non-uniform loops.

Feautrier P. Some efficient solutions to the affine scheduling problem, part i, one dimensional time. International
Journal of Parallel Programming 21. (1992), pp. 313-348

Lim W., Cheong G.I., Lam M.S. An affine partitioning algorithm to maximize parallelism and minimize
communication. In Proceedings of the 13th ACM SIGARCH International Conference on Supercomputing. (1999)

Darte A., Robert Y., Vivien F. Scheduling and Automatic Parallelization. Birkhaduser Boston. (2000)

Bastoul C., Cohen A., Girbal S., Sharma S., and Temam O. Putting polyhedral loop transformations to work. In
Languages and Compilers for Parallel Computing (LCPC'03). LNCS, pp 23--30, College Station, Texas, Springer-
Verlag (2003).

Affine transformation framework

Instances of each instruction are 1dentified by the loop index values
of their surrounding loops, and affine expressions are used to map
these loops index values to a partition number:

= Space partition (Affine mapping): operations belonging
to the same space partition are mapped to the same
Processor.

= Time partition (Affine scheduling): operations
belonging to time partition 1 are executed before those 1n
partition 1+1.

Affine transformation framework

The operations of a loop are divided into partitions
such that dependent operations are placed in the same
partition.

.

i2
>

A partitioning 1s described by an affine mapping for
each loop statement.

ATF Algorithm
(BECiIN)

A 4

Find all dependences

A 4

Form the reduced dependence graph

A 4

Find all strongly connected components
(SCC)

A 4

Find affine transforms for each SCC

l

Generate parallel code taking into account the
order of the SCCs execution

Tools

m Petit? : a research tool for performing
dependence analysis and program
transformations.

s Omega Calculator®: a research tool for
Presburger arithmetics, including solving linear
systems of equalities and code generation.

° http://www.cs.umd.edu/projects/omega/

Example of parallelization by ATF

BEGIN

Find all
dependences

For the following loop:

for i=1 to m do
for j=1 to m do
3: a(i,j)=a(i,j-1)
4: b(i,))=b(-1,))
5: c(i,j)=c(i,j)+a(i,j-1)*b(i-1,j)
endfor
endfor

We get the information about dependences:

flow 3:a(i,)) > 3:a(i,j-1)
{[i,j] > [ij+1]: 1 <=i<=m && 1 <=j <m}
flow 3: a(i,)) > 5:a(i,j-1)
{[i,j] > [ij+1]: 1 <=i<=m && 1 <=j <m}
flow 4:b(1,)) > 4: b(i-1,j)
{[ij] > [1t1j]: 1 <si<m && 1 <=j<=m}
flow 4: b(i,)) > 5:b(i-1,))
{lij] > [i+1j]: 1 <=i<m && 1 <=j<=m}

Example of parallelization by ATF

According to the information

flow 3:a(i,) --> 3:a(1,)-1)

{ig] > [1g+l]: 1 <si<=m && 1 <=] <m}
v flow 3:a(i,)) --> 5:a(1,)-1)

Form the reduced (lij]->[,jt1]:1<=si<=m && 1 <=j<m}
dependence graph flow 4:b(i,)) --> 4:b(i-1,))

{ig] > N+1j]:1<=1i<m&& 1 <=j)<=m}
flow 4:b(1,)) --> 5:b(i-1,)

{ig] >[+1j]:1<=1i<m && 1 <=j)<=m}

il we construct the following reduced
Find all SCCs dependence graph

()

The graph contains
three SCCs, given by
instruction 3, 4 1 5.

Example of parallelization by ATF

Find the affine

transforms for
each SCC

A 4

1. For each SCC, form a set of the
dependence relations and construct

the system of linear equations.

2. Find the solution of the system.

Generate parallel code
taking into account the

order of the SCCs
execution

@ In this graph SCCs 3
and 4 can be executed
in parallel, while 5 can

be executed only after
executing SCCs 3 and 4.

Example of parallelization by ATF

The generated parallel code:

#parallel
{
#independent
parfor 1 = 1; 1<= m; 1++)
forG =1;j<=m;jH)
a (1)) =a(1-1);
#independent
parfor(1 = 1; 1<= m; i+t)
forG=1;)j<= m; j++)
b(.1)=b(-1,1);
J

parfor (i=1; 1<=m; 1+=1)
parfor (j=1; j<=m; j+=1)
c(1,j)=c(1,))ta(1,-1)*b(-1,))

—

Pragma #parallel contains
SCCs which are within
pragmas #independent and
which can be executed in
parallel

The keyword ,,parfor”
defines loops whose
iterations can be executed
in parallel.

Limitations of ATF

» It fails to extract all synchronization-free slices available

in a loop it

6

for i=1 ton do >

for j=1 to m do
s1: a(i,j)=b(i,j)+c(i,j)
s2: c(ij-1)=a(i,j+1)

4

RI={[i,j] > [ij+1]:1<i<n && 1 <j<m}
R2={[i,j] = [ij+1]: 1<i<n && 1 <j<m)}

Limitations of ATF

» It fails to extract all synchronization-free slices available

in a loop it

RI={[ij] > [ij*1]:1<i<n&& 1 <j<m} 6
R2={[ij] > [ij+1]:1<i<n&& 1 <j<m}
5

4

C11*i+C12%j+C1=C21*i+C22*j+C22+C2 3
C21*i+C22%j+C2=C11*i+C12*j+C12+C1

U

C11 = C21 = arbitrary value,
let it be n1, n1>0.
Cl12=C22=0

Limitations of ATF

m [t fails to extract coarse-grained parallelism available 1n a
subspace of the loop domain

for1=1tondo
forj=1tondo
a(2*1, 3*)) = b(1,))
b(1+1,) = a(1, J)
R1 = {[i,j] — [21,3j]: 1<j & 2i<n &

1<1 & 31<n }
R2 = {[i,j] — [i+1,j]: 1S5<n & 1<j<n }

Limitations of ATF

m [t fails to extract coarse-grained parallelism available 1n a
subspace of the loop domain

A

R1 = {[ij] — [2i,3]]: 1<j & 2i <n &
1<i & 3j<n }

R2 = {[i,j] — [it1l,j]: 1Sj<n & 1<j<n }

4

J

8
Ve
6
5
4
3
2
1

Limitations of ATF

m [t fails to extract coarse-grained parallelism in the general
case of non-uniform loops

>

fori=1tondo
forj=1tondo
a(2*1, 3%]) = b(1,))
b(1t1,) =a(1,))

= \V w I Ul o ~ o -

Limitations of ATF

= It fails to extract threads when Synchronization is required
among them -

for 1=1 ton do

for j=1 to m do
a(1,))=a(2%1+2%),2%))+a(1,)-1)

1 2 3 4 5 6 i

RI={[ij] - [2i+2j,2i]] : 1 <j & 2j<m & 1 <i & 2i+2j <n}
R2={[i,j] > [i,j+1]: 1 <i<n & 1 <j<m}.

Limitations of ATF

= It fails to extract threads when Synchronization is required
among them -

C11* +C12%j+C1 = C11*(2i+2j)+C12*(2j)+ C1
C11*i + C12%j + C1 = C11*i + C12*(j+1) + C1

i

{ (-C11)*i+ (<C12-2C11)*j = 0

Cl12=0 ﬂ
{c12—0 <
Cll1=0 1 2 3 4 5 6 i

Limitations of the ATF motivate further research
aimed at developing more advanced techniques for
extracting parallelism

Slicing Framework

Program slicing (introduced by Mark Weiser in 1979)
1s a viable method to restrict the focus of a task to specific

sub-components of a program.

Iteration space slicing (introduced by Pugh in 1997)
takes dependence information as input to find all
operations which must be executed to produce the correct
values for the specified array elements.

Slicing Framework

Definition 4. Operations I and J are called the source and
destination of a dependence, respectively,
provided that I 1s lexicographically smaller than J
(I 1s executed before J).

J
-@

Destination

Slicing framework

Definition 2. The source/destination of a dependence is the
ultimate dependence source / destination if it is
not the destination/source of any other dependence.

=

/A‘ ® — > Ultimate dependence

destinations

Ultimate dependence
sources

Slicing framework

Definition 3. For a given set of dependence relations D, the slice of
D i1s a maximal subset S of iterations such that there exists a
(possibly indirect) path between any pair of iterations in S.

oy

O
A

=

— > Ultimate dependence

destinations

Ultimate dependence
sources

Slicing framework

Definition 4. A slice is independent or Synchronization-free if
there 1s no dependence between the iterations in slice and
the remaining iterations in the iteration space

oy

O
A

=

— > Ultimate dependence

destinations

Ultimate dependence
sources

Slicing framework

Definition 5. The source(s) of a slice is the ultimate dependence
source(s) that this slice comprises.

®
A

/A

® — > Ultimate dependence

®

»

®
A

destinations
»
A

A

‘> SOUrces

L‘ Ultimate dependence

\Y

Sources of Slice A

v

Source of Slice B

Examples of slices

Dependences in loop A: Dependences in loop B:

Notations for each
of loops A and B:

Dependences
of Slice One

Dependences
of Slice Two

O Ultimate sources
of Slice One

Ultimate sources

O O O O of Slice Two

Two slices with a Two slices with
single multiple
ultimate source each ultimate sources each

Modified Floyd-Warshal algorithm

Input: a set of A set of dependence relations {R;;} describing direct
dependences between each pair of statements 1,) 1n an SCC

/* for some 1,), R;;can be empty if a dependence analysis does not
extract direct dependences between statements 1 and j */

foreach statement r
foreach statement p
foreach statement q

Output: At the end, each Ri,j describes all transitive
dependences between statements 1 and j in the SCC.

Slicing algorithm®

INPUT:
Dependence relations
representing an SCC

OUTPUT:
Parallel code

< BEGIN >
!

Find all ultimate dependence sources

|

Find sources of slices

!

Find operations of each slice

!

Generate code scanning slices and iterations of
each slice in lexicographical order

END

8 Beletska A., Bielecki W., San Pietro P.: Finding synchronization-free
slices of operations in arbitrarily nested loops. ICCSA 2008.

Slicing algorithm

< BEGIN > INPUT: n - dimension of loop
Set S:{llij | i,j « [1,q]}

Foreach relation R;; € S do

Normalize relation R;; so that each
v input and output tuple has exactly n

(14 29

Find all ultimate elements, by inserting value “-1” at
dependence sources the rightmost positions of tuples:

le]=[e; e, ... el

where k 1s some integer,
replace by a tuple

[e;e,..e . -1-1...-1].

Slicing algorithm

< BEGIN >

\ 4

Find all ultimate
dependence sources

Foreach relation R;; € S do

Extend input and output tuples of
R;; with additional objects
representing identifiers of
statements 1 and j, respectively:

transform
R;;: i
Into
R;;: {[e,1

Slicing algorithm

< BEGIN >

\ 4

Find all ultimate
dependence sources

Find set, UDS, containing ultimate
dependence sources:

Slicing algorithm

< BEGIN >
|

Find all ultimate
dependence sources

|

Find sources of slices

Calculate exact transitive closure, R*,
representing all the transitive
dependenes in SCC, by applying the
modified Floyd-Warshal algorithm to
calculate relations representing
all transitive dependences between
each pair of statements 1, j in SCC:

where I 1s the identity relation.

Slicing algorithm

< BEGIN >
|

Find all ultimate
dependence sources

|

Find sources of slices

Form relation R_UCS representing all
pairs of ultimate dependence sources
that are connected (by an indirect path)
in the dependence graph formed by R:

R UCS := {[e]>[e']:
e,e' e UDS, ¢' e,
range (R*(e')) N range (R*(e)) #J }.

Form set, Sources, comprising the
(lexicographically minimal) sources of
slices:

Sources := UDS — range R UCS

Example of parallelization

fori=1tondo

sl: b(1,1) = a(1-3,1)
forj=1tondo

s2: a(ij)=a(ij-1)+b(3,));

{ 1] — [1]: 1sisn & 1<55<n §;

R, = { [1,i+3] — [i+3]: 1<i<n-3};

Ry, = 1 [1y] = [1j+1]: 1sisn & 15)<nj ;

Example of parallelization

fori=1tondo

sl: b(1,1) = a(1-3,1)
forj=1tondo

s2: a(ij)=a(ij-1)+b(3,));

{ 1] — [1]: 1sisn & 1<55<n §;

R, = { [1,i+3] — [i+3]: 1<i<n-3};

Ry, = 1 [1y] = [1j+1]: 1sisn & 15)<nj ;

Example of parallelization

Ry ={[i,-1,1] = [i,j,1]:
1<isn & 1<5j<n }

R, = {[i,i+3,2] — [i+3,-1,1]:
1<i=n-3}

Ry = {[i,j,2] — [i,j+1,2]
1<isn & 1sj<n}

UDS:= { [i,-1,1] : 1 <i < min(n,3) }

C JIC Ol DAl dlic ALUIC
order to computer the exa 5 C ¢ R C d relatio
d O1'(C : 9 C 0(C(OV{ d dl 4120
r|p | g |Resulis ofiterations of the Floyd-Warshal | Simplified results
alzorithm

(1|1 |BEp=edwdo To & Fip' =@
1112 |Ra=FRavRe o & Fi12 =R
1121 |Ey=Eywwo e By Ra1 =R
1122 |Baa=FaawFiae T o Ry Fas' =Ry Rz o Ry
211 l R111" = ﬁfl =i Hlll Q ng'* Q Hu' ﬁ]-,l-l = RI,I u] ':RI,IU RI,I Q RI,I:'* Q RI,I
4114 Fa" = ﬁf: =Rz Faa' o Faa* o Bpdf ﬁf: =Ripw(Re2w Rz o Ry o Byg
4|4 1 Rllu = ﬁj‘l = Rlll LA Rﬂ,ll Q ng'* Q Rg;' ﬁj‘l = RI,I v/ RI,I o ':RI,I v/ RI,I Q RI,I:'*
1122 R, = Ry2wRyz o Ry

Baq" = ﬁi =Raa"w Has' o oo™ o Radf

Example of parallelization

Next, we compute R* as follows:
R* ;= U U U v U =

{[i,-1,1] —[i',-1,1] : 3 (alpha : i' = i+3alpha & 1<i<i-3 & i'<n)} U{[i,-1,1]
— [i,j’,2] : 1<i<n & 1<j'<n & 4<n} U {[i,-1,1] — [i'j",2] : 3 (alpha :

i+3alpha =i' & 1<i<i'-3 & 1<j'<n & i'<n)} U {[i,-1,1] —[i,j’2] : j', i<n<3
& 1<i & 1<)} U {[1,i+3,2] —[i+3,-1,1] : 1<i<n-3} U {[1,j,2] —[i+3,-1,1]
. 1,j-2<i<n-3 & 1<j} U {[ij,2] -> [ij',2]: 1<i<j'<n & 1<i<n} U {[ij,In 3]
—>[i,j,In_3] }

R UCS :=J

Sources ;= UDS — R UCS = {[I,-1,1]: I £1<min(n,3) }

Slicing algorithm

if Sources # & then

genLoops (in: Sources;

7 out: OuterLoops, L I);

Generate cgde.scanmng Foredch IinLL, I do
synchronization-free S Slice := R* (R UCS*(I))
slices and iterations of // note: if R_UCS =& then R UCS*(I)=I
each slice in genLoops (in: S_Slice;
lexicographical order out: InnerLoops, L_J);

foreach Jin L J do
genLoopBody (in:OuterLoops,InnerLoops,J;
out:LoopBody);

Code generation

= 10 generate the code, well known
techniques can be applied®

Ancourt C., Irigoin F., Scanning polyhedra with do loops, in: Proceedings of the
Third ACM/SIGPLAN Symposium on Principles and Practice of Parallel
Programming, ACM Press. (1991) pp. 39-50 .

Bastoul C. Code Generation in the Polyhedral Model Is Easier Than You Think. In
Proceedings of the PACT'13 IEEE International Conference on Parallel
Architecture and Compilation Techniques, Juan-les-Pins. (2004) 7-16

Boulet P., Darte A., Silber G.A., Vivien F., Loop parallelization algorithms: from
parallelism extraction to code generation, Parallel Computing, 24. (1998), pp.
421-444

Quillere F., Rajopadhye S., Wilde D., Generation of efficient nested loops from
polyhedra, International Journal of Parallel Programming 28. (2000)

Vasilache N., Bastoul C., and Cohen A. Polyhedral code generation in the real
world. In Proceedings of the International Conference on Compiler Construction
(ETAPS CC'06), LNCS, pp 185--201, Vienna, Austria, March 2006. Springer-
Verlag

Example of parallelization

Code generation for set Sources

To generate a nest of outer loops
scanning sources of synch.-free slices
comprised in set Sources, we apply
the Omega code generator and get:

for(t1=1; t1<=min(n,3); t1++)
s1(tl,-1,1);

O O O
1 2

List L I contains single vector I equal
to (tl,-1,1)".

Example of parallelization

Code generation for set Sources

Generate mnner loops to enumerate iterations Applying the Omega code
belonging to the slice with a source generator to set S_Slice, we
represented by vector I=(t1,-1,1)’. yield the inner loops.

Find set S_Slice = R* (R_UCS* (I)) T S(tl -1 1)

{[1,-1,1]: (alpha:1=tl+3alpha & _1. — e D4

<1193 & i<n)} U {[112]: Istlsn & 10T 2SI

1<j<n & 4<n}U{[i,j,2]: (alpha :i=tl+ s(t1,t2,2);

3alpha & 1<t1<i-3 & 1<j<n & i<n)} U for(t3 = t1+3; t3<=n; t3+=3) {

{[t1,j,2]: 1<t1<n<3 & 1<j<n} U {[i,-1,1]: $(13,-1,1):;

L=t for(t2 =1; t2 <=n; t2++)
s(t3,t2,2);

)

List L J contains single vectors:
(t1,-1,1)7, (t1,t2,2)", (t3,-1,1)" and (t3,t2,2)’

Example of parallelization

Code generation for set Sources

Generate the body of the inner loops containing statements of the source
loop body to be executed at iteration J, and insert the generated code as

the body of outer loops.

The resulting code 1s as follows: parfor (t1 = 1; t1 <= min(n,3); t1++) {

b(tl,tl)=a(tl-3,tl);

for(t2 = 1; t2 <=n; t2++)
a(tl,t2)=a(tl,t2-1)+b(tl,tl);

for(t3=t1+3; t3<=n; t3+=13) {
b(t3,t3)=a(t3-3,t3);
for(t2 = 1; t2 <=n; t2++)

a(t3,t2)=a(t3,t2-1)+b(t3,t3);

Slicing algorithm

m s applicable to perfectly-nested both uniform
and non-uniform loops

fori=1tondo
forj=1tondo
a(2*1, 3%]) = b(1,))
b(1t1,) =a(1,))

Slicing algorithm

m [s applicable to perfectly-nested both uniform
and non-uniform loops

fori=1tondo
forj=1tondo
a(2*1, 3%]) = b(1,))
b(1t1,) =a(1,))

/o Laii
..”’..

1 2 3 4 5 6 7 8 i

2
2

Slicing algorithm

=] ton do
=] tom do

s
-
<
>
O
o)
O
~
Q
av]
=
<
O

for 1
for j

=
<
<=
~=—
c
<
<
=
AN
Q
Q
h
0]
O
P
=
=
Q
<
P
Sh
<
L
o
~=
0]
>
N
=
[
O
a¥
N

Slicing algorithm

s Can be applied to loops when the following conditions
are satisfied:

» Exact dependence analysis can be performed for these
loops

» Exact transitive closure can be calculated for
dependence relations describing dependences in the
loops

Presburger arithmetic limitations

for i=1 to n do R:={[i]->[2i]: 1 <i,2i <n}.
a(i)=a(2*1)

e s sH OT o o e

>
2 3 4 b5 6 7 8 9 10 11 12 [

Omega does not extract the exact positive transitive closure for

this example, because it is represented with non-linear
expressions and is of the form:

R+= {[i] > [j] : Exists (k: k>1 && j=2*1 && 1 <1,j<n)}

Fine-grained parallelism

» In some cases, code representing slices (coarse-
grained parallelism) can be simply transformed into
code representing fine-grained parallelism

parfor1=1tondo

forj=1tondo
a(la.]) = a(iaj_l)
fori=1tondo

parfor j=1tondo
a(la.]) — a(iaj_l)

Fine-grained parallelism

» In some cases, code representing slices (coarse-
grained parallelism) can be simply transformed into
code representing fine-grained parallelism

parfor1=1tondo

forj=1tondo
a(la.]) = a(iaj_l)
fori=1tondo

parfor j=1tondo
a(la.]) — a(iaj_l)

Fine-grained parallelism

» In some cases, code representing slices (coarse-
grained parallelism) can be simply transformed into
code representing fine-grained parallelism

parfor1=1tondo

forj=1tondo 1 A
a(i,j) = a(ij-1) HHOHD
ﬂ Gl Gl Gl Gl [

Bl Gl Gl Gl [

fori=1tondo BN

parfor j=1tondo
a(la.]) — a(iaj_l)

Further research

s Development of approaches to extract slices
requiring synchronization
J

5

for 1=1 to n do 4

for j=1 to m do 3
a(1,))=a(2*1+2%),2%))+a(1,-1)

Further research

s Development of approaches to extract slices
requiring synchronization
J

5

for 1=1 to n do 4

for j=1 to m do 3
a(1,))=a(2*1+2%),2%))+a(1,-1)

1 2 3 4 5 6

Further research

s Development of approaches to extract slices
requiring synchronization
J

5

for 1=1 to n do 4

for j=1 to m do 3
a(1,))=a(2*1+2%),2%))+a(1,-1)

Further research

m Calculation of exact transitive closure
described by non-linear forms

m Derivation of approaches to generate code
scanning elements of sets represented with
non-linear forms

s Experiments with benchmarks

Further research

m Development of approaches combining ATF
with the slicing framework

for 1i=1 ton do

for j=1 to m do
a(1,))=a(2%1+2%),2%))+a(1,)-1)

Further research

m Development of approaches combining ATF
with the slicing framework ,j

® 0
for i=1 ton do ? %
®

for j=1 to m do
a(1,))=a(2%1+2%),2%))+a(1,)-1)

« extract subdomains of a loop by means of the slicing framework,

 to each subdomain, apply the ATF (time partitioning).

Further research

m Development of approaches combining ATF
with the slicing framework

5

for 1i=1 ton do

for j=1 to m do
a(1,))=a(2%1+2%),2%))+a(1,)-1)

Such a hybrid technique could permit us
for less complexity in comparison with
that of the slicing framework

Thank you very much for your

attention!

Thank you very much for your

attention!

