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EExtracxtractingting coarsecoarse grainedgrainedEExtracxtractingting coarsecoarse--grained grained 
parallelismparallelismpa a e spa a e s

in arbitrarily nested loopsin arbitrarily nested loops



CoarseCoarse--grained parallelismgrained parallelismCoarseCoarse grained parallelismgrained parallelism
CoarseCoarse--grained parallelism is employed by grained parallelism is employed by 

ti th d h ti iti th d h ti icreating a thread on each processor, executing in creating a thread on each processor, executing in 
parallel for a period of time with occasional parallel for a period of time with occasional 

synchronisationsynchronisationsynchronisation.synchronisation.
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Iteration space and 
data dependences

Fine-grained 
scheme

Coarse-grained 
scheme



CoarseCoarse--grained parallelismgrained parallelismCoarseCoarse grained parallelismgrained parallelism

P id hi h f l iProvides high performance on multiprocessors



CoarseCoarse--grained parallelismgrained parallelismCoarseCoarse grained parallelismgrained parallelism
Increases performance on computers with dual p p
CPU core chips



CoarseCoarse--grained parallelismgrained parallelismCoarseCoarse grained parallelismgrained parallelism

Increases performance of distributed systemsIncreases performance of distributed systems



CoarseCoarse--grained parallelismgrained parallelismCoarseCoarse grained parallelismgrained parallelism

Enhances performance of uniprocessorsEnhances performance of uniprocessors

• Improves code locality
D i t• Decreases memory requirements



CoarseCoarse--grained parallelismgrained parallelismCoarseCoarse grained parallelismgrained parallelism
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It can be used in embedded systems It can be used in embedded systems decreasing decreasing 
cost and power consumption! cost and power consumption! 



Approaches to extract CGPApproaches to extract CGPApproaches to extract CGPApproaches to extract CGP

Unimodular transformsUnimodular transforms11

•• Can be applied only to perfectlyCan be applied only to perfectly--nested uniform loopsnested uniform loops

11 Banerjee U. Unimodular transformations of double loops. In 
Proceedings of the Third Workshop on Languages and Compilers for 
Parallel Computing. (1990) pp. 192-219 

11 Wolf M.E. Improving locality and parallelism in nested loops. Ph.D. 
Dissertation CSL-TR-92-538, Stanford University, Dept. Computer 
Science. (1992) 



Approaches to extract CGPApproaches to extract CGPApproaches to extract CGPApproaches to extract CGP

Approach based on the Hamiltonian recurrences Approach based on the Hamiltonian recurrences 22
•• Is applicable only to uniform nonIs applicable only to uniform non--parameterized loopsparameterized loops

22 Gavaldà R.,Ayguade E.,  Torres J. Obtaining Synchronization-Free Gavaldà R.,Ayguade E.,  Torres J. Obtaining Synchronization Free 
Code with Maximum Parallelism. Technical Report LSI-96-23-R, 
Universitat Politècnica de Catalunya. (1996)



Approaches to extract CGPApproaches to extract CGPApproaches to extract CGPApproaches to extract CGP

Procedures of heuristic searchesProcedures of heuristic searches33

•• ddo not guarantee extracting the entire o not guarantee extracting the entire coarsecoarse--
grainedgrained parallelism available in nonparallelism available in non--uniform loops uniform loops 

33 W  Kelly  W  Pugh  Minimizing communication while preserving W. Kelly, W. Pugh, Minimizing communication while preserving 
parallelism, in: Proceedings of the 1996 ACM International Conference 
on Supercomputing. (1996) 52-60 



Approaches to extract CGPApproaches to extract CGPApproaches to extract CGPApproaches to extract CGP
Affine transformation frameworkAffine transformation framework44

44 Feautrier P. Some efficient solutions to the affine scheduling problem, g p ,
part i, one dimensional time. International Journal of Parallel 
Programming 21. (1992), pp. 313-348 

44 Lim W., Cheong G.I., Lam M.S. An affine partitioning algorithm to 
maximize parallelism and minimize communication. In Proceedings of 
the 13th ACM SIGARCH International Conference on Supercomputing. 
(1999) 

44 Darte A., Robert Y., Vivien F. Scheduling and Automatic Parallelization. 
Birkhäuser Boston. (2000)

44 Bastoul C., Cohen A., Girbal S., Sharma S., and Temam O. Putting 
polyhedral loop transformations to work. In Languages and Compilers 
for Parallel Computing (LCPC'03). LNCS, pp 23--30, College Station, 
Texas, Springer-Verlag (2003).



Approaches to extract CGPApproaches to extract CGPApproaches to extract CGPApproaches to extract CGP
Slicing frameworkSlicing framework55

55 Weiser M.. Program slices: formal, psychological, and practical 
investigations of an automatic program abstraction method. PhD 
thesis  University of Michigan  Ann Arbor  MI  (1979)thesis, University of Michigan, Ann Arbor, MI. (1979)

55 Weiser M. Program Slicing. IEEE Transactions on Software 
Engineering, v. SE-10, no. 7. (1984), pp 352-357.

55 Pugh W. , Rosser E. Iteration Space Slicing and Its Application to 
Communication Optimization In Proceedings of the International 
Conference on Supercomputing. (1997), pp 221-228



Data dependencesData dependences
Definition 1Definition 1. . A dependence relationA dependence relation is a mapping from one iteration 

space to another, and is represented by a set of linear 

pp

constraints on variables that stand for the values of the loop 
indices at the source and destination of the dependence and 
the values of the symbolic constants6.y

relationset
1l

{ [i,j] -> [i,j+1] : 1 ≤ i < j ≤ 5 }

sour

destin

Presburger 
formula

{ [i,j] : 1 ≤ i,j ≤ 5 }

Presburger 
formula

iteration 
space rce nation

formulaformulaspace
2l

Iteration space and data 
dependences

Iteration space Data dependences
dependences

66 Pugh, W., Wonnacott D.: An Exact Method for Analysis of Value-based Array Data 
Dependences. Workshop on Languages and Compilers for Parallel Computing, 1993 



Dependence analysisDependence analysisp yp y

Our approaches require an exact dependence analysisexact dependence analysis
which detects a dependence if and only if it exists.which detects a dependence if and only if it exists. 

The dependence analysis by Pugh and Wonnacott Pugh and Wonnacott was 
chosen where dependences are found in the form of tuple 

l ti 7relations7 .

77 Pugh W., Wonnacott D. Constraint-based array dependence analysis. 
In ACM Trans. on Programming Languages and Systems. (1998)



Dependence graphsDependence graphsp g pp g p
Dependence GraphDependence Graph ReducedReduced

Dependence GraphDependence Graph
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represents all the dependences 
among iterations available in a

7
is composed of vertices for each 
statement of the loop  and edges 
joining ertices according toamong iterations available in a 

loop
joining vertices according to 
dependence relations



Strongly Connected ComponentsStrongly Connected Components
Strongly connected componentStrongly connected component is a maximal 
subset of vertices and edges of a reducedsubset of vertices and edges of a reduced 
dependence graph where for every pair of vertices 
there exists  a direct path.p

S1
This graph has two strongly 
connected components given 

S1

S2 g
by {S1, S2} and {S3}, 
respectively.

S2

S3S3



Affine transformation frameworkAffine transformation frameworkAffine transformation frameworkAffine transformation framework
The Affine Transformation FrameworkThe Affine Transformation Framework44 is considered in 
many works and unifies a large number of previouslymany works and unifies a large number of previously 
proposed loop transformations. 
Today it is one of the most powerful frameworks for loopToday, it is one of the most powerful frameworks for loop 
transformations allowing us to extract coarse-grained 
parallelism presented in arbitrarily nested uniform loopsparallelism presented in arbitrarily nested uniform loops 
and in some cases of non-uniform loops. 

44 Feautrier P Some efficient solutions to the affine scheduling problem part i one dimensional time InternationalFeautrier P. Some efficient solutions to the affine scheduling problem, part i, one dimensional time. International 
Journal of Parallel Programming 21. (1992), pp. 313-348 

44 Lim W., Cheong G.I., Lam M.S. An affine partitioning algorithm to maximize parallelism and minimize 
communication. In Proceedings of the 13th ACM SIGARCH International Conference on Supercomputing. (1999) 

4444 Darte A., Robert Y., Vivien F. Scheduling and Automatic Parallelization. Birkhäuser Boston. (2000)
44 Bastoul C., Cohen A., Girbal S., Sharma S., and Temam O. Putting polyhedral loop transformations to work. In

Languages and Compilers for Parallel Computing (LCPC'03). LNCS, pp 23--30, College Station, Texas, Springer-
Verlag (2003).



Affine transformation frameworkAffine transformation frameworkAffine transformation frameworkAffine transformation framework
Instances of each instruction are identified by the loop index values 
of their surrounding loops, and affine expressions are used to map 
these loops index values to a partition number: 

Space partition (Affine mapping):Space partition (Affine mapping): operations belonging 
to the same space partition are mapped to the sameto the same space partition are mapped to the same 
processor. 

Time partition (Affine scheduling):Time partition (Affine scheduling): operations 
belonging to time partition i are executed before those in 
partition i+1. 



Affine transformation frameworkAffine transformation frameworkAffine transformation frameworkAffine transformation framework
The operations of a loop are divided into partitions 
such that dependent operations are placed in the same 
partition. 

j1 j2

A titi i i d ib d b ffi i f

i1 i2

A partitioning is described by an affine mapping for 
each loop statement. 



ATF Algorithm ATF Algorithm 
BEGIN

Fi d ll d dFind all dependences

Form the reduced dependence graph 

Find all strongly connected components 
(SCC) 

Find affine transforms for each SCC

Generate parallel code taking into account the 
order of the SCCs execution

END



Tools  Tools  

PPetitetit99 :: a research tool for performingPPetitetit99 : : a research tool for performing 
dependence analysis and program 
transformationstransformations. 

OOmega Calculatormega Calculator99: : a research tool for 
Presburger arithmetics, including solving linear g , g g
systems of equalities and code generation. 

99 http://www.cs.umd.edu/projects/omega/



Example of parallelization by ATFExample of parallelization by ATF

BEGIN for i=1 to m do

For the following loop:

BEGIN for j=1 to m do
3:  a(i,j)=a(i,j-1)
4:  b(i,j)=b(i-1,j)
5: c(i j)=c(i j)+a(i j 1)*b(i 1 j)

Find all 
dependences

5:  c(i,j)=c(i,j)+a(i,j-1)*b(i-1,j)
endfor

endfor

W t th i f ti b t d dWe get the information about dependences:

flow    3: a(i,j)          -->  3: a(i,j-1)       
{[i,j] -> [i,j+1] : 1 <= i <= m && 1 <= j < m}
flow    3: a(i,j)          -->  5: a(i,j-1)  
{[i,j] -> [i,j+1] : 1 <= i <= m && 1 <= j < m}
flow    4: b(i,j)          -->  4: b(i-1,j) 
{[i,j] -> [i+1,j] : 1 <= i < m && 1 <= j <= m}{[i,j]  [i 1,j] : 1  i  m && 1  j  m}
flow    4: b(i,j)          -->  5: b(i-1,j)  
{[i,j] -> [i+1,j] : 1 <= i < m && 1 <= j <= m}



Example of parallelization by ATFExample of parallelization by ATF

flow    3: a(i,j)          -->  3: a(i,j-1)       
{[i j] [i j 1] 1 i && 1 j }

According to the information

{[i,j] -> [i,j+1] : 1 <= i <= m && 1 <= j < m}
flow    3: a(i,j)          -->  5: a(i,j-1)  
{[i,j] -> [i,j+1] : 1 <= i <= m && 1 <= j < m}
flow    4: b(i,j)          -->  4: b(i-1,j) 

Form the reduced 
dependence graph ( ,j) ( ,j)

{[i,j] -> [i+1,j] : 1 <= i < m && 1 <= j <= m}
flow    4: b(i,j)          -->  5: b(i-1,j)  
{[i,j] -> [i+1,j] : 1 <= i < m && 1 <= j <= m}

p g p

we construct the following reduced 
dependence graph

3 4

Find all SCCs

3 4

The graph contains 
three SCCs, given by 
instruction 3 4 i 55 instruction 3, 4 i 5. 



Example of parallelization by ATFExample of parallelization by ATF

1. For  each SCC, form a set of the 

Find the affine 
transforms for 

each SCC

dependence relations and construct 

the system of linear equations.

2 Find the solution of the system2. Find the solution of the system.

Generate parallel code 
taking into account  the 3 4 I hi h SCC 3

g
order of the SCCs 

execution

3 4 In this graph SCCs 3 
and  4 can be executed 
in parallel, while 5 can 
be executed only  after 

i SCC 3 d 45 executing SCCs 3 and 4. 



Example of parallelization by ATFExample of parallelization by ATF

# ll l# ll l

The generated parallel code:

#parallel#parallel
{

#independent#independent
parforparfor (i  =  1 ;  i <=  m ;  i++  )  

Pragma #parallel contains 
SCCs which are within 

#i d d d
pp ( ; ; )

for (j  =  1 ;  j <=  m ;  j++  )  
a (i,j) = a (i,j-1); 

#independent#independent
parforparfor (i = 1 ; i <= m ; i++ )

pragmas #independent and 
which can be executed in 
parallel

parforparfor (i  =  1 ;  i <=  m ;  i++  )  
for (j  = 1 ; j <=  m ;  j++  )  

b (j,i ) = b (j-1, i );  
}

The keyword „parfor” 
defines loops whose 
iterations can be executed

parforparfor (i=1; i<=m; i+=1) 
parforparfor (j=1; j<=m; j+=1) 

c(i j)=c(i j)+a(i j-1)*b(i-1 j)

iterations can be executed 
in parallel.

c(i,j) c(i,j)+a(i,j-1) b(i-1,j)



Limitations of ATFLimitations of ATFLimitations of ATFLimitations of ATF
It fails to extract all synchronizationall synchronization--free slices free slices available 
in a loopin a loop  j

6

for i=1 to n do
for j=1 to m do

5

4

S1

S2

s1:  a(i,j)=b(i,j)+c(i,j)
s2:  c(i,j-1)=a(i,j+1)

3

2

1 2     3 i 

1

R1={[i,j] → [i,j+1] : 1 ≤ i ≤ n && 1 ≤ j < m}
R2={[i,j] → [i,j+1] : 1 ≤ i ≤ n && 1 ≤ j < m}



Limitations of ATFLimitations of ATFLimitations of ATFLimitations of ATF
It fails to extract all synchronizationall synchronization--free slicesfree slices available 
in a loopin a loop j

6R1={[i,j] → [i,j+1] : 1 ≤ i ≤ n && 1 ≤ j < m}
R2={[i j] → [i j+1] : 1 ≤ i ≤ n && 1 ≤ j < m}

5

4

S1

S2

R2 {[i,j] → [i,j+1] : 1 ≤ i ≤ n && 1 ≤ j < m}

3

2

C11*i+C12*j+C1=C21*i+C22*j+C22+C2
C21*i+C22*j+C2=C11*i+C12*j+C12+C1

1 2     3 i 

1

C11 = C21 = arbitrary value, 
let it be n1, n1≥0.

C12 = C22 = 0



Limitations of ATFLimitations of ATFLimitations of ATFLimitations of ATF
It fails to extract coarse-grained parallelism available  in a 

b f th l d ib f th l d isubspace of the loop domainsubspace of the loop domain
j

8

for i = 1 to n do
for j = 1 to n do

7

6
for j  1 to n do

a(2*i, 3*j) = b(i,j)
b(i+1, j) = a(i, j)

5

4

33

2

1R1 = {[i,j] → [2i,3j]: 1≤j & 2i ≤ n & 

1    2     3   4    5    6    7    8    i 

1≤i & 3j≤n }
R2 = {[i,j] → [i+1,j]: 1≤j<n & 1≤j≤n }



Limitations of ATFLimitations of ATFLimitations of ATFLimitations of ATF
It fails to extract coarse-grained parallelism available  in a 

b f th l d ib f th l d isubspace of the loop domainsubspace of the loop domain
j

8R1 = {[i,j] → [2i,3j]: 1≤j & 2i ≤ n & 
1≤i & 3j≤ }

7

6
⎧ ++=++ C03j*C12i*C2C0j*C1i*C2

1≤i & 3j≤n }
R2 = {[i,j] → [i+1,j]: 1≤j<n & 1≤j≤n }

5

4

3

⎩
⎨
⎧

+++=++
++++

C0j*C1)1(i*C1C0j*C1i*C2
C03jC12iC2C0jC1iC2

⎧ 3

2

1

⎩
⎨
⎧

=
+=

C10
2j*C1i*C20

1    2     3   4    5    6    7    8    i 
⎩
⎨
⎧

=
=

0C2
01C



Limitations of ATFLimitations of ATFLimitations of ATFLimitations of ATF
It fails to extract coarse-grained parallelism in the general 
case of nonnon uniform loopsuniform loopscase of  nonnon--uniform loopsuniform loops

j

8

for i = 1 to n do
7

6

for j = 1 to n do
a(2*i, 3*j) = b(i,j)
b(i+1 j) = a(i j)

5

4

3b(i+1, j) = a(i, j) 3

2

1

1    2     3   4    5    6    7    8    i 



Limitations of ATFLimitations of ATFLimitations of ATFLimitations of ATF
It fails to extract threads when synchronizationsynchronization is required yy q
among  them j

5

for i=1 to n do
for j=1 to m do

4

3

a(i,j)=a(2*i+2*j,2*j)+a(i,j-1) 2

1

1   2   3   4   5    6      i  

R1 {[i j] [2i+2j 2j] 1 ≤ j & 2j ≤ & 1 ≤ i & 2i+2j ≤ }R1={[i,j] → [2i+2j,2j] : 1 ≤ j & 2j ≤ m & 1 ≤ i & 2i+2j ≤ n}
R2={[i,j] → [i,j+1] : 1 ≤ i ≤ n & 1 ≤ j < m}.



Limitations of ATFLimitations of ATFLimitations of ATFLimitations of ATF
It fails to extract threads when synchronizationsynchronization is required yy q
among  them j

5C11*i +C12*j+C1 = C11*(2i+2j)+C12*(2j)+ C1
C11*i C12*j C1 C11*i C12*(j 1) C1 4

3

C11*i + C12*j + C1 = C11*i + C12*(j+1) + C1

(-C11)*i + (-C12-2C11)*j = 0
2

1

( C11) i + ( C12 2C11) j  0
C12 = 0

C12 = 0
1   2   3   4   5    6      i  

Limitations of the ATF motivate further research Limitations of the ATF motivate further research 

C12  0
C11 = 0

aimed at developing aimed at developing more more advanced techniquesadvanced techniques for for 
extracting parallelismextracting parallelism



Slicing FrameworkSlicing FrameworkSlicing FrameworkSlicing Framework

P li iP li i (i t d d b M k W i i 1979)Program slicingProgram slicing (introduced by Mark Weiser in 1979)
is a viable method to restrict the focus of a task to specific 
sub-components of a programsub-components of a program.

Iteration space slicingIteration space slicing (introduced by Pugh in 1997)
takes dependence information as input to find all 
operations which must be executed to produce the correct 
values for the specified array elements.



Slicing FrameworkSlicing Frameworkgg

D fi iti 4D fi iti 4 O ti I d J ll d th dDefinition 4.Definition 4. Operations I and J are called the sourcesource and 
destinationdestination of a dependence, respectively, 
provided that I is lexicographically smaller than Jprovided that I is lexicographically smaller than J  
( I is executed before J). 

I J

Source Destination



Slicing frameworkSlicing frameworkgg
Definition 2.Definition 2. The source/destination of a dependence is the 

lti t d dlti t d d // d ti tid ti ti if it iultimate dependence sourceultimate dependence source // destinationdestination if it is 
not the destination/source of any other dependence.

Ultimate dependence 
d ti tidestinations

l i d dUltimate dependence 
sources



Slicing frameworkSlicing frameworkgg
Definition 3.Definition 3. For a given set of dependence relations D, the slicethe slice of 

D i i l b t S f it ti h th t th i tD is a maximal subset S of iterations such that there exists a 
(possibly indirect) path between any pair of iterations in S. 

Ultimate dependence 
d ti tidestinations

l i d dUltimate dependence 
sources



Slicing frameworkSlicing frameworkgg

Definition 4.Definition 4. A slice is  independent or synchronizationsynchronization--freefree if 
there is no dependence between the iterations in slice and 
the remaining iterations in the iteration space

Ultimate dependence 
d ti tidestinations

l i d dUltimate dependence 
sources



Slicing frameworkSlicing frameworkgg
Definition 5.Definition 5. The source(s) of a slicesource(s) of a slice is the ultimate dependence 

source(s) that this slice comprises

Ultimate dependence 

source(s) that this slice comprises.

destinations

Ultimate dependence 
sources

Sources of Slice A Source of Slice B



Examples of slicesExamples of slicesExamples of slicesExamples of slices
Dependences in loop A: Dependences in loop B:

Dependences

Notations for each 
of loops A and B:

of Slice One

Dependences
of Slice Two

Ultimate sources 
of Slice One

Ultimate sources
of Slice Two

Two slices with a Two slices with Two slices with a 
single

ultimate source each

Two slices with 
multiple

ultimate sources each



Modified FloydModified Floyd--Warshal algorithmWarshal algorithmModified FloydModified Floyd Warshal algorithmWarshal algorithm
Input:Input: a set of A set of dependence relations {Ri,j} describing direct 
dependences between each pair of statements i,j  in an SCCp p ,j

/* for some i,j,  Ri,j can be empty  if  a dependence analysis does not 
extract  direct dependences  between  statements i and j */

foreachforeach statement rstatement r
foreachforeach statement pstatement pforeachforeach statement  pstatement  p

foreachforeach statement qstatement q
RRRRR r,pr,rq,rq,pq,p *)( oo∪= ,p,q,q,pq,p

OutputOutput:: At the end each Ri j describes all transitiveOutputOutput:: At the end, each Ri,j describes all transitive
dependences between statements i and j in the SCC.



Slicing algorithmSlicing algorithm88

BEGININPUT:INPUT:
Dependence relations 

i SCC

Fi d f li

Find all ultimate dependence sourcesrepresenting an SCC

Find sources of slices

Find operations of each slice

Generate code scanning slices and iterations of OUTPUT:OUTPUT:

Find operations of each slice

g
each slice in lexicographical order

END

Parallel code

END

88 Beletska A., Bielecki W., San Pietro P.: Finding synchronization-free 
slices of operations in arbitrarily nested loops. ICCSA 2008.



Slicing algorithmSlicing algorithm
BEGIN INPUT: INPUT: n - dimension of loop

Set S={Rij | i,j ∈ [1,q]}

Foreach relation RForeach relation Ri,ji,j ∈∈ S doS do

N li l i R h h

Find all ultimate 

Normalize relation Ri,j so that each
input and output tuple has exactly n
elements, by inserting value “-1” at

dependence sources the rightmost positions of tuples:

[e]=[e1 e2 … en-k], 

where k is some integer, 
replace by a tuple 

[e1 e2 .. en-k -1 -1 … -1].



Slicing algorithmSlicing algorithm
BEGIN

Foreach relation RForeach relation Ri,ji,j ∈∈ S doS do

E d i d l f

Find all ultimate 

Extend input and output tuples of
Ri,j with additional objects
representing identifiers of

dependence sources statements i and j, respectively: 

transform    
Ri,j: {[e]→[e′]
into 
Ri,j: {[e,i]→[e′,j]



Slicing algorithmSlicing algorithm
BEGIN

Find all ultimate 

Find set, UDS, containing ultimate 
dependence sources:

dependence sources UU
SR

j,i
SR

j,i
j,ij,i

RranRdom:UDS
∈∈

−=



Slicing algorithmSlicing algorithm
BEGIN

Find all ultimate Calculate exact transitive closure, R*, 
representing all the transitivedependence sources representing all the transitive 
dependenes in SCC, by applying the 
modified Floyd-Warshal algorithm to 

l l t l ti ti+calculate relations         representing 
all transitive dependences between 
each pair of statements i, j in SCC:

+
j,iR

Find sources of slices

U
qji

ji IRR
≤≤

+ ∪=
,1

, )(*

where I is the identity relation.



Slicing algorithmSlicing algorithm
BEGIN Form relation R_UCS representing all 

pairs of ultimate dependence sources 

Find all ultimate 

p p
that are connected (by an indirect path) 
in the dependence graph formed  by R:

dependence sources
p

R_UCS := {[e]R_UCS := {[e]→→[e']: [e']: 
e, e' e, e' ∈∈ UDS,  e'    UDS,  e'    e, e, 

range (R*(e'))range (R*(e')) ∩∩ range (R*(e))range (R*(e)) ≠∅≠∅ }.}.

Find sources of slices

range (R (e )) range (R (e )) ∩∩ range (R (e)) range (R (e)) ≠∅≠∅ }. }. 

Form set Sources comprising theForm set, Sources, comprising the 
(lexicographically minimal) sources of 
slices:

Sources := UDS Sources := UDS –– range R_UCSrange R_UCS



Example of parallelizationExample of parallelizationExample of parallelizationExample of parallelization
j

6

5

4

for i = 1 to n do
s1:     b(i,i) = a(i-3,i) 

for j = 1 to n do
3

2

for j = 1 to n do
s2: a(i,j)=a(i,j-1)+b(i,j);

R1 1 := { [i] → [i,j]: 1≤i≤n & 1≤j<n };
1     2 3     4 5     6    i(s2)

1

R1,1 :  { [i] [i,j]: 1≤i≤n & 1≤j n };

R2,1 := { [i,i+3] → [i+3]: 1≤i≤n-3}; 1     2 3     4 5     6      i (s1)

R2,2 := { [i,j] → [i,j+1]: 1≤i≤n & 1≤j<n} ;



Example of parallelizationExample of parallelizationExample of parallelizationExample of parallelization
j

6

5

4

for i = 1 to n do
s1:     b(i,i) = a(i-3,i) 

for j = 1 to n do
3

2

for j = 1 to n do
s2: a(i,j)=a(i,j-1)+b(i,j);

R1 1 := { [i] → [i,j]: 1≤i≤n & 1≤j<n };
1     2 3     4 5     6    i(s2)

1

R1,1 :  { [i] [i,j]: 1≤i≤n & 1≤j n };

R2,1 := { [i,i+3] → [i+3]: 1≤i≤n-3}; 1     2 3     4 5     6      i (s1)

R2,2 := { [i,j] → [i,j+1]: 1≤i≤n & 1≤j<n} ;



Example of parallelizationExample of parallelizationExample of parallelizationExample of parallelization
R1,1 := { [i,--1,11,1] → [i,j,11]: 

j

61,1 { j
1≤i≤n & 1≤j<n } 5

4

R2,1 := { [i,i+3,22] → [i+3,--1,11,1]:
1≤i≤n-3}

3

2

R2,2 := { [i,j,22] → [i,j+1,22]:
1     2 3     4 5     6    i(s2)

1

2,2
1≤i≤n & 1≤j<n}

1     2 3     4 5     6      i (s1)

UDS:= { [i,UDS:= { [i,--1,1] :1,1] : 11 ≤≤ ii ≤≤ min(min(nn,3) },3) }



Example of parallelizationExample of parallelizationExample of parallelizationExample of parallelization
In order to computer the exact transitive closure R*, we first find relations
+R +R +R +R,        ,        ,          according to the modified Floyd-Warshal algorithm.
+

1,1R +
2,1R +

1,2R +
2,2R

Results of iterations of the Floyd-Warshal Algorithm



Example of parallelizationExample of parallelizationExample of parallelizationExample of parallelization
Next, we compute R* as follows:    

R*R* :=        ∪ ∪ ∪ ∪ U  =

{[i -1 1] →[i' -1 1] : ∃ ( alpha : i' = i+3alpha & 1≤i≤i'-3 & i'≤n)} ∪{[i -1 1]

+
1,1R +

2,1R +
1,2R +

2,2R

{[i,-1,1] →[i ,-1,1] : ∃ ( alpha : i   i+3alpha & 1≤i≤i -3 & i ≤n)} ∪{[i,-1,1] 
→ [i,j',2] : 1≤i≤n & 1≤j'≤n & 4≤n} ∪ {[i,-1,1] → [i',j',2] : ∃ (alpha : 
i+3alpha = i' & 1≤i≤i'-3 & 1≤j'≤n & i'≤n)} ∪ {[i,-1,1] →[i,j',2] : j', i≤n≤3 
& 1≤i & 1≤j'} ∪ {[i i+3 2] →[i+3 1 1] : 1≤i≤n 3} ∪ {[i j 2] →[i+3 1 1]& 1≤i & 1≤j } ∪ {[i,i+3,2] →[i+3,-1,1] : 1≤i≤n-3} ∪ {[i,j,2] →[i+3,-1,1] 
: 1,j-2≤i≤ n-3 & 1≤j} ∪ {[i,j,2] -> [i,j',2]: 1≤j≤j'≤n & 1≤i≤n} ∪ {[i,j,In_3] 
→[i,j,In_3] }.

R_UCS R_UCS := ∅

SourcesSources := UDS – R_UCS = {[I,-1,1] : 1 ≤ i ≤ min(n,3) }



Slicing algorithmSlicing algorithmSlicing algorithmSlicing algorithm
if Sources ≠ ∅ then

genLoopsgenLoops (in: Sources;
out: OuterLoops, L_I);

Generate code scanning 
synchronization-free 

slices and iterations of

foreach I in L_I do         
S_Slice := R* (R_UCS*(I))
// note: if R UCS = ∅ then R UCS*(I)=I+

11Rslices and iterations of 
each slice in 

lexicographical order

// note: if  R_UCS = ∅ then R_UCS*(I)=I
genLoopsgenLoops (in: S_Slice;

out: InnerLoops, L_J);

1,1

foreach J in L_J do
genLoopBody genLoopBody (in:OuterLoops,InnerLoops,J; 

out:LoopBody);

END

p y);

end



Code generationCode generationCode generationCode generation
To generate the code, well known To generate the code, well known 
techniques can be appliedtechniques can be applied99

99 Ancourt C., Irigoin F., Scanning polyhedra with do loops, in: Proceedings of the 
Third ACM/SIGPLAN Symposium on Principles and Practice of Parallel 
Programming, ACM Press. (1991) pp. 39-50 .

99 Bastoul C. Code Generation in the Polyhedral Model Is Easier Than You Think. In 
Proceedings of the PACT'13 IEEE International Conference on Parallel Proceedings of the PACT 13 IEEE International Conference on Parallel 
Architecture and Compilation Techniques, Juan-les-Pins. (2004) 7-16

99 Boulet P., Darte A., Silber G.A., Vivien F., Loop parallelization algorithms: from 
parallelism extraction to code generation, Parallel Computing, 24. (1998), pp. 
421-444 

99 Quillere F., Rajopadhye S., Wilde D., Generation of efficient nested loops from 
polyhedra, International Journal of Parallel Programming 28. (2000) 

99 Vasilache N., Bastoul C., and Cohen A. Polyhedral code generation in the real 
world. In Proceedings of the International Conference on Compiler Construction 
(ETAPS CC'06), LNCS, pp 185--201, Vienna, Austria, March 2006. Springer-
Verlag



Example of parallelizationExample of parallelizationExample of parallelizationExample of parallelization
Code generation for set Sources

j

6

To generate a nest of outer loops 
scanning sources of synch.-free slices 

5

4g y
comprised in set Sources, we apply 
the Omega code generator and get: 3

2

for(t1=1; t1for(t1=1; t1<=<=min(n,3); t1++) min(n,3); t1++) 
s1(t1,s1(t1,--1,1);1,1); 1     2 3     4 5     6    i(s2)

1

List L_I contains single vector I equal 
to  (t1,-1,1)'. 1     2 3     4 5     6      i (s1)



Example of parallelizationExample of parallelizationExample of parallelizationExample of parallelization
Code generation for set Sources
Generate inner loops to enumerate iterations 
belonging to the slice with a source 
represented by vector I=(t1,-1,1)’.

Applying  the Omega code 
generator to set S_Slice, we 
yield  the inner  loops.

Find set S_Slice := R* (R_UCS* (I)) =
{[i,-1,1]:  ( alpha : i = t1+3alpha & 
1≤t1≤i-3 & i≤n)} ∪ {[t1,j,2]: 1≤t1≤n & 

s(t1,s(t1,--1,1);1,1);
forfor(t2 = 1; t2 <= n; t2++) (t2 = 1; t2 <= n; t2++) 

s(t1 t2 2);s(t1 t2 2);1≤j≤n & 4≤n}∪{[i,j,2]: ( alpha : i = t1+ 
3alpha & 1≤t1≤i-3 & 1≤j≤n & i≤n)} ∪
{[t1,j,2]: 1≤t1≤n≤3 & 1≤j≤n} ∪ {[i,-1,1]: 
i = t1}.

s(t1,t2,2);s(t1,t2,2);
forfor(t3 = t1+3; t3<=n; t3+=3) (t3 = t1+3; t3<=n; t3+=3) {{

s(t3,s(t3,--1,1);1,1);
forfor(t2 1; t2 < ; t2++)(t2 1; t2 < ; t2++)i  t1}. forfor(t2 = 1; t2 <= n; t2++) (t2 = 1; t2 <= n; t2++) 
s(t3,t2,2);    s(t3,t2,2);    

}}

List L_J contains single vectors:
(t1,-1,1)´, (t1,t2,2)´, (t3,-1,1)´ and (t3,t2,2)´



Example of parallelizationExample of parallelizationExample of parallelizationExample of parallelization
Code generation for set Sources
Generate the body of the inner loops containing statements of the source 
loop body to be executed at iteration J, and insert the generated code as 
the body of outer loops. y p

The resulting code is as follows: parforparfor (t1 = 1; t1 <= min(n,3); t1++) (t1 = 1; t1 <= min(n,3); t1++) {{
b(t1,t1)=a(t1b(t1,t1)=a(t1--3,t1);3,t1);b(t1,t1) a(t1b(t1,t1) a(t1 3,t1);3,t1);
forfor(t2 = 1; t2 <= n; t2++) (t2 = 1; t2 <= n; t2++) 

a(t1,t2)=a(t1,t2a(t1,t2)=a(t1,t2--1)+b(t1,t1);1)+b(t1,t1);
forfor(t3=t1+3; t3<= n; t3+= 3)(t3=t1+3; t3<= n; t3+= 3) {{forfor(t3 t1+3; t3<  n; t3+  3) (t3 t1+3; t3<  n; t3+  3) {{

b(t3,t3)=a(t3b(t3,t3)=a(t3--3,t3);3,t3);
forfor(t2 = 1; t2 <= n; t2++) (t2 = 1; t2 <= n; t2++) 

a(t3 t2)=a(t3 t2a(t3 t2)=a(t3 t2--1)+b(t3 t3);1)+b(t3 t3);a(t3,t2)=a(t3,t2a(t3,t2)=a(t3,t2--1)+b(t3,t3);1)+b(t3,t3);
}}

}}



Slicing algorithmSlicing algorithmSlicing algorithmSlicing algorithm
Is applicable to perfectlyIs applicable to perfectly--nested both uniform nested both uniform 
and nonand non--uniform loops uniform loops 

j

for i = 1 to n do

8

7

6for j = 1 to n do
a(2*i, 3*j) = b(i,j)
b(i+1 j) = a(i j)

6

5

4b(i+1, j) = a(i, j)
3

2

1    2     3   4    5    6    7    8    i 

1



Slicing algorithmSlicing algorithmSlicing algorithmSlicing algorithm
Is applicable to perfectlyIs applicable to perfectly--nested both uniform nested both uniform 
and nonand non--uniform loops uniform loops 

j

for i = 1 to n do

8

7

6for j = 1 to n do
a(2*i, 3*j) = b(i,j)
b(i+1 j) = a(i j)

6

5

4b(i+1, j) = a(i, j)
3

2

1    2     3   4    5    6    7    8    i 

1



Slicing algorithmSlicing algorithmSlicing algorithmSlicing algorithm
Permits us to extract more slices than that Permits us to extract more slices than that 
extracted by ATF  extracted by ATF  

j

6

5 S1
for i=1 to n do

for j=1 to m do
4

3

S2for j=1 to m do
s1:  a(i,j)=b(i,j)+c(i,j)
s2:  c(i,j-1)=a(i,j+1)

2

1

( ,j ) ( ,j )

1 2     3 i 



Slicing algorithmSlicing algorithmSlicing algorithmSlicing algorithm
Can be applied to loops when the following conditions Can be applied to loops when the following conditions 

i fi di fi dare satisfied:are satisfied:

•• Exact dependence analysis can be performed for these Exact dependence analysis can be performed for these 
loopsloops

•• Exact transitive closure can be calculated for Exact transitive closure can be calculated for 
dependence relations dependence relations describing dependences in the describing dependences in the 
looploopss



Presburger arithmetic limitationsPresburger arithmetic limitationsPresburger arithmetic limitationsPresburger arithmetic limitations

f i 1 t dfor i=1 to n do
a(i)=a(2*i)

R:={[i]->[2i]: 1 ≤ i, 2i ≤ n}.

1    2 3     4 5      6 7     8     9    10   11   12      i

Omega does not extract the exact positive transitive closure for g p
this example, because it is represented with non-linear 

expressions and is of the form:

R+= {[i] -> [j] : Exists ( k: k ≥1 && j=2k*i && 1 ≤ i, j ≤ n )}



FineFine--grained parallelismgrained parallelismFineFine grained parallelismgrained parallelism
InIn somesome cases, code representing cases, code representing slices (slices (coarcoarssee--

i d ll lii d ll li )) b i l t f d i tb i l t f d i tgrained parallelismgrained parallelism)) can be simply transformed into can be simply transformed into 
code representing finecode representing fine--ggrainedrained parallelismparallelism

j 
parforparfor i = 1 to n do

for j = 1 to n dofor j  1 to n do
a(i,j) = a(i,j-1)

i
for i = 1 to n do

ff j 1 t d iparforparfor j = 1 to n do
a(i,j) = a(i,j-1)



FineFine--grained parallelismgrained parallelismFineFine grained parallelismgrained parallelism
InIn somesome cases, code representing cases, code representing slices (slices (coarcoarssee--

i d ll lii d ll li )) b i l t f d i tb i l t f d i tgrained parallelismgrained parallelism)) can be simply transformed into can be simply transformed into 
code representing finecode representing fine--ggrainedrained parallelismparallelism

j 
parforparfor i = 1 to n do

for j = 1 to n dofor j  1 to n do
a(i,j) = a(i,j-1)

i
for i = 1 to n do

ff j 1 t d iparforparfor j = 1 to n do
a(i,j) = a(i,j-1)



FineFine--grained parallelismgrained parallelismFineFine grained parallelismgrained parallelism
IIn n somesome cases, code representing cases, code representing slices (slices (coarcoarssee--

i d ll lii d ll li )) b i l t f d i tb i l t f d i tgrained parallelismgrained parallelism)) can be simply transformed into can be simply transformed into 
code representing finecode representing fine--ggrainedrained parallelismparallelism

j 
parforparfor i = 1 to n do

for j = 1 to n dofor j  1 to n do
a(i,j) = a(i,j-1)

i
for i = 1 to n do

ff j 1 t d iparforparfor j = 1 to n do
a(i,j) = a(i,j-1)



Further researchFurther researchFurther researchFurther research

Development of approaches to extract slices 
requiring synchronizationsynchronization

j

for i=1 to n do

j

5

4for i=1 to n do
for j=1 to m do

a(i,j)=a(2*i+2*j,2*j)+a(i,j-1)

4

3
( ,j) ( j, j) ( ,j )

2

1

1   2   3   4   5    6      i  
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j

5

4for i=1 to n do
for j=1 to m do

a(i,j)=a(2*i+2*j,2*j)+a(i,j-1)

4

3
( ,j) ( j, j) ( ,j )
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Further researchFurther researchFurther researchFurther research

Development of approaches to extract slices 
requiring synchronizationsynchronization

j

for i=1 to n do

j

5

4for i=1 to n do
for j=1 to m do

a(i,j)=a(2*i+2*j,2*j)+a(i,j-1)

4

3
( ,j) ( j, j) ( ,j )

2

1

1   2   3   4   5    6      i  



Further researchFurther researchFurther researchFurther research

Calculation of exact transitive closure 
described by non-linear forms

Derivation of approaches to generate codeDerivation of approaches to generate code 
scanning elements of sets represented with 
non-linear formsnon linear forms

E i t ith b h kExperiments with benchmarks



Further researchFurther researchFurther researchFurther research
Development of approaches combining ATF 

ith th li i f kwith the slicing framework
5

4

j

4

3
for i=1 to n do
for j=1 to m do

(i j) (2*i+2*j 2*j)+ (i j 1) 2

1

a(i,j)=a(2*i+2*j,2*j)+a(i,j-1)

1    2    3   4    5    6      i  



Further researchFurther researchFurther researchFurther research
Development of approaches combining ATF 

ith th li i f kwith the slicing framework
5

4

j

for i=1 to n do
for j=1 to m do

(i j) (2*i+2*j 2*j)+ (i j 1)

4

3

a(i,j)=a(2*i+2*j,2*j)+a(i,j-1) 2

1

• extract subdomains of a loop by means of the slicing framework

1    2    3   4    5    6      i  

• extract subdomains of a loop by means of the slicing framework,

• to each subdomain, apply the ATF (time partitioning).



Further researchFurther researchFurther researchFurther research
Development of approaches combining ATF 

ith th li i f kwith the slicing framework
5

4

j

for i=1 to n do
for j=1 to m do

(i j) (2*i+2*j 2*j)+ (i j 1)

4

3

a(i,j)=a(2*i+2*j,2*j)+a(i,j-1) 2

1

1    2    3   4    5    6      i  

Such a hybrid technique could permit us 
for less complexity in comparison with 

that of the slicing framework
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